If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+24x-352=0
a = 16; b = 24; c = -352;
Δ = b2-4ac
Δ = 242-4·16·(-352)
Δ = 23104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23104}=152$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-152}{2*16}=\frac{-176}{32} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+152}{2*16}=\frac{128}{32} =4 $
| x-8/7=9 | | 5w=4w+14 | | 2=10−4y | | 2y-6=5y-4y | | 5x=-14-9x | | y+84=8y | | 5/27=x/39 | | 11a-91=4a | | 13x+5=25+3x | | X+19-2x28=17 | | 5x=-14-9× | | 6(4x+12)=8(3x-14 | | 2x+20+2x=6 | | 5x+65=5+20x | | 4×^4/3-13x^2/3+9=0 | | 9v-9=6v+7 | | 4v+24=6v+14 | | k+5-6k=17-2k | | 18=3(3x−6) | | x+5x=8;x=-204 | | 15t=t^2 | | 68x=3x | | 10f–12=38 | | -5x-33=4x+12 | | 5s+3=s-9 | | -2=1/5x+6 | | 5/8x-5/28=3/8x-3/4 | | x+5/4=5-x+2/3 | | r4=75 | | 3y−1−9y=29 | | 1/2x−5=−1 | | 8a−10=38 |